Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sodium *N*-bromo-4-chlorobenzenesulfonamidate sesquihydrate

B. Thimme Gowda,^a* Jozef Kožíšek,^b Miroslav Tokarčík^c and Hartmut Fuess^d

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, ^bDepartment of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ^cDepartment of Chemical Physics, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic, and ^dInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 16 May 2007; accepted 18 May 2007

Key indicators: single-crystal X-ray study; T = 300 K; mean σ (C–C) = 0.009 Å; R factor = 0.045; wR factor = 0.103; data-to-parameter ratio = 14.8.

In the structure of the title compound, $Na^+ \cdot C_6H_4Br-CINO_2S^- \cdot 1.5H_2O$, which crystallizes with two cations, two anions and three water molecules in the asymmetric unit, the sodium ions show octahedral coordination by three O atoms of water molecules and by three sulfonyl O atoms of three different *N*-bromobenzenesulfonamide anions. The S-N distances [1.574 (5) and 1.579 (4) Å] are consistent with an S=N double bond. The crystal structure is stabilized by O-H…Br, O-H…N, O-H…O and C-H…Br hydrogen bonds.

Related literature

For related literature, see: Gowda & Shetty (2004); Gowda & Usha (2003); Gowda *et al.* (2005); Gowda, Foro *et al.* (2007); Gowda, Jyothi, Foro *et al.* (2007); Gowda, Jyothi, Kozisek *et al.* (2003); Gowda, Kozisek *et al.* (2007); Gowda, Savitha *et al.* (2007); Gowda, Srilatha *et al.* (2007); Gowda, Usha *et al.* (2007); Usha & Gowda (2006).

Experimental

Crystal data Na⁺·C₆H₄BrClNO₂S⁻·1.5H₂O $M_r = 319.54$ Orthorhombic, $P2_12_12_1$ a = 6.7510 (7) Å b = 10.495 (1) Å c = 30.286 (3) Å

 $V = 2145.8 (4) \text{ Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 4.3 \text{ mm}^{-1}$ T = 300 (2) K $0.52 \times 0.32 \times 0.11 \text{ mm}$ Data collection

```
Oxford Diffraction Xcalibur
diffractometer
Absorption correction: analytical
(Clark & Reid, 1995)
T_{\rm min} = 0.186, T_{\rm max} = 0.543
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ H ato: $wR(F^2) = 0.103$ indexS = 1.06refit4156 reflections $\Delta \rho_{max}$ 280 parameters $\Delta \rho_{min}$ 9 restraintsAbsol

13453 measured reflections 4156 independent reflections 3782 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.043$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$
Absolute structure: Flack (1983),
1739 Friedel pairs
Flack parameter: 0.025 (12)

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} 0.03W - H31 \cdots Br1 \\ 0.03W - H32 \cdots N2^{i} \\ 0.4W - H41 \cdots N2^{ii} \\ 0.4W - H42 \cdots 0.7W^{ii} \\ 0.7W - H42 \cdots 0.7W^{ii} \\ 0.7W - H71 \cdots Br2 \\ 0.7W - H72 \cdots N1 \\ 0.7W - H72 \cdots N1 \\ 0.7W - H72 \cdots Br2^{ii} \end{array}$	$\begin{array}{c} 0.82 \ (4) \\ 0.82 \ (5) \\ 0.82 \ (4) \\ 0.82 \ (4) \\ 0.82 \ (4) \\ 0.82 \ (4) \\ 0.82 \ (4) \\ 0.82 \ (4) \\ 0.93 \end{array}$	2.81 (5) 2.08 (4) 2.14 (5) 2.46 (4) 2.62 (5) 2.02 (4) 2.85	3.610 (4) 2.875 (6) 2.911 (6) 3.202 (6) 3.392 (4) 2.840 (6) 3.657 (6)	167 (6) 166 (5) 158 (4) 152 (5) 157 (6) 174 (5) 146

Symmetry codes: (i) x + 1, y + 1, z; (ii) x, y + 1, z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2003); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997), *DIAMOND* (Brandenburg, 2002); software used to prepare material for publication: *SHELXL97*, *PLATON* (Spek, 2003), *WinGX* (Farrugia, 1999).

BTG gratefully thanks the Alexander von Humboldt Foundation, Bonn, Germany for extensions of his research fellowship. JK and MT thank the Grant Agency of the Slovak Republic (grant No. 1/2449/05).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2373).

References

Brandenburg, K. (2002). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Clark, R. C. & Reid, J. S. (1995). *Acta Cryst.* A**51**, 887–897.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Gowda, B. T., Damodara, N. & Jyothi, K. (2005). Int. J. Chem. Kinet. 37, 572–582.
- Gowda, B. T., Foro, S., Kozisek, J. & Fuess, H. (2007). Acta Cryst. E63. In the press.
- Gowda, B. T., Jyothi, K., Foro, S., Kozisek, J. & Fuess, H. (2007). Acta Cryst. E63, m1644–m1645.
- Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
- Gowda, B. T., Kozisek, J., Tokarcik, M. & Fuess, H. (2007). Acta Cryst. E63. In the press.
- Gowda, B. T., Savitha, M. B., Kozisek, J., Tokarcik, M. & Fuess, H. (2007). Acta Cryst. E63, m1646.

Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.

- Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62. In the press.
- Gowda, B. T. & Usha, K. M. (2003). Z. Naturforsch. Teil A, 58, 351-356.
- Gowda, B. T., Usha, K. M., Kozisek, J., Tokarcik, M. & Fuess, H. (2007). Acta Cryst. E63. In the press.

Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.
 Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.

supplementary materials

Acta Cryst. (2007). E63, m1647-m1648 [doi:10.1107/S1600536807024531]

Sodium N-bromo-4-chlorobenzenesulfonamidate sesquihydrate

B. T. Gowda, J. Kozísek, M. Tokarcík and H. Fuess

Comment

The chemistry of N-halo arylsulfonamides is of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda *et al.*, 2005; Gowda & Shetty, 2004; Usha & Gowda, 2006). In the present work, the structure of sodium *N*-bromo-4-chlorobenzenesulfonamide has been determined to explore the effect substituent on the solid state structures of sulfonamides and N-halo arylsulfonamides (Gowda *et al.*, 2003; Gowda, Foro *et al.*, 2007; Gowda, Jyothi *et al.*, 2007; Gowda, Kozisek *et al.*, 2007; Gowda, Savitha *et al.*, 2007; Gowda, Srilatha *et al.*, 2007; Gowda, Usha *et al.*, 2007). The structure of of the title compound (Fig. 1) resembles those of sodium *N*-bromo-benzenesulfonamde (Gowda, Usha *et al.*, 2007) and sodium *N*-chloro-4-chlorobenzenesulfonamde (Gowda, Jyothi *et al.*, 2007). The sodium ion shows octahedral coordination by three O atoms of water molecules and by three sulfonyl O atoms of three different *N*-bromobenzenesulfonamide anions. There is no interaction between the nitrogen and sodium atoms in the molecule and there are two molecules in the asymmetric unit. The S—N distances of N1—S1, 1.574 (5)Å and N2—S2 1.579 (4)Å are consistent with a S—N double bond. There are several hydrogen bonds in the crystal structure.

Experimental

The title compound was prepared according to the literature method (Gowda & Usha, 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Gowda & Usha, 2003). Single crystals of the title compound were obtained from its aqueous solution and used for X-ray diffraction studies at room temperature.

Refinement

H atoms bonded to C were positioned geometrically and refined using a riding model with C—H = 0.93Å and with $U_{iso}(H)$ = 1.2 $U_{eq}(C)$. H atoms of water molecules (O3w, O4w, O7w) were visible in difference map and were subsequently treated as riding with $U_{iso}(H) = 1.2 U_{eq}(O)$ and with the O—H bond length restrained to 0.82 (2) Å and the H[…]H distance restrained to 1.35 (2) Å.

Figures

Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Packing diagram of the title compound viewed down the axis a, showing part of the crystal structure stabilized by hydrogen bonds O7w—H72…N1, O3w—H32…N2 and O4w—H41…N2.

Sodium N-Bromo-4-Chlorobenzenesulfonamide sesquihydrate

Crystal data

Na ⁺ .C ₆ H ₄ BrClNO ₂ S ⁻ .1.5H ₂ O	$F_{000} = 1256$
$M_r = 319.54$	$D_{\rm x} = 1.978 {\rm Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2831 reflections
a = 6.7510(7) Å	$\theta = 2.5 - 26.4^{\circ}$
b = 10.4950 (10) Å	$\mu = 4.3 \text{ mm}^{-1}$
c = 30.286 (3) Å	T = 300 (2) K
$V = 2145.8 (4) \text{ Å}^3$	Block, yellow
Z = 8	$0.52 \times 0.32 \times 0.11 \text{ mm}$

Data collection

Xcalibur System, Oxford Diffraction diffractometer	4156 independent reflections
Radiation source: fine-focus sealed tube	3782 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
T = 300(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
Rotation method data acquisition using ω and phi scans	$\theta_{\min} = 5.1^{\circ}$
Absorption correction: analytical (Clark & Reid, 1995)	$h = -8 \rightarrow 5$
$T_{\min} = 0.186, \ T_{\max} = 0.543$	$k = -12 \rightarrow 12$
13453 measured reflections	<i>l</i> = −36→37

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0395P)^{2} + 5.8841P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.103$	$(\Delta/\sigma)_{\rm max} = 0.011$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.51 \text{ e} \text{ Å}^{-3}$
4156 reflections	$\Delta \rho_{\rm min} = -0.63 \ e \ {\rm \AA}^{-3}$
280 parameters	Extinction correction: none
9 restraints	Absolute structure: Flack (1983), 1739 Friedel Pairs

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2141 (8)	0.1181 (5)	0.13313 (16)	0.0231 (11)
C2	0.2041 (11)	0.2388 (6)	0.1520 (2)	0.0425 (15)
H2	0.2513	0.3093	0.1367	0.051*
C3	0.1235 (10)	0.2537 (8)	0.1939 (2)	0.0488 (18)
H3	0.1168	0.3338	0.2069	0.059*
C4	0.0532 (9)	0.1474 (8)	0.2159 (2)	0.0429 (16)
C5	0.0622 (10)	0.0286 (7)	0.1971 (2)	0.0433 (16)
Н5	0.0144	-0.0417	0.2124	0.052*
C6	0.1412 (9)	0.0129 (6)	0.15574 (18)	0.0340 (14)
H6	0.1461	-0.0676	0.1429	0.041*
C7	-0.2985 (8)	-0.4278 (5)	0.13144 (16)	0.0223 (10)
C8	-0.3727 (9)	-0.3308 (6)	0.15638 (19)	0.0327 (13)
H8	-0.3697	-0.2475	0.1459	0.039*
С9	-0.4532 (9)	-0.3576 (7)	0.1977 (2)	0.0391 (14)
Н9	-0.5053	-0.2925	0.2150	0.047*
C10	-0.4546 (9)	-0.4807 (7)	0.2125 (2)	0.0388 (15)
C11	-0.3822 (10)	-0.5776 (7)	0.1881 (2)	0.0415 (16)
H11	-0.3856	-0.6605	0.1990	0.050*
C12	-0.3020 (10)	-0.5526 (5)	0.1466 (2)	0.0378 (13)
H12	-0.2519	-0.6184	0.1293	0.045*
N1	0.4811 (6)	-0.0033 (5)	0.08062 (15)	0.0296 (10)
N2	-0.0030 (6)	-0.4826 (4)	0.07372 (14)	0.0254 (10)
01	0.1630 (6)	0.0484 (4)	0.05138 (11)	0.0298 (9)
02	0.3802 (7)	0.2285 (4)	0.06782 (13)	0.0379 (10)
O3W	0.8614 (6)	0.2759 (4)	0.04069 (14)	0.0346 (10)
H31	0.843 (10)	0.219 (4)	0.0589 (14)	0.041*
H32	0.914 (9)	0.337 (4)	0.0526 (16)	0.041*
O4W	0.2557 (6)	0.4969 (4)	-0.00286 (12)	0.0322 (9)
H41	0.164 (6)	0.489 (5)	0.0146 (16)	0.039*
H42	0.312 (8)	0.565 (3)	0.0007 (18)	0.039*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

05	-0.3324 (6)	-0.4527 (4)	0.04617 (11)	0.0285 (8)
O6	-0.1679 (7)	-0.2632 (3)	0.07497 (12)	0.0330 (9)
O7W	0.3480 (6)	-0.2262 (4)	0.03649 (13)	0.0341 (9)
H71	0.344 (10)	-0.284 (4)	0.0549 (14)	0.041*
H72	0.394 (9)	-0.162 (3)	0.0481 (16)	0.041*
Na1	0.5364 (3)	0.3495 (2)	0.01446 (7)	0.0302 (5)
Na2	0.0188 (3)	-0.1502 (2)	0.01942 (8)	0.0319 (5)
S1	0.3149 (2)	0.10180 (12)	0.07971 (4)	0.0237 (3)
S2	-0.1963 (2)	-0.39892 (11)	0.07809 (4)	0.0222 (2)
Cl1	-0.0412 (3)	0.1656 (3)	0.26874 (6)	0.0739 (7)
C12	-0.5467 (3)	-0.5110 (2)	0.26505 (5)	0.0600 (5)
Br1	0.68840 (9)	0.04232 (6)	0.119227 (19)	0.03784 (16)
Br2	0.18659 (9)	-0.42882 (6)	0.11598 (2)	0.03978 (17)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.023 (3)	0.029 (3)	0.017 (2)	0.001 (2)	0.001 (2)	-0.0003 (19)
C2	0.058 (4)	0.033 (3)	0.037 (3)	0.000 (3)	0.008 (3)	-0.003 (3)
C3	0.047 (4)	0.055 (4)	0.044 (4)	-0.008 (3)	0.011 (3)	-0.017 (3)
C4	0.019 (3)	0.075 (5)	0.035 (3)	-0.004 (3)	0.003 (3)	-0.012 (3)
C5	0.042 (4)	0.059 (4)	0.029 (3)	-0.008 (3)	0.005 (3)	0.008 (3)
C6	0.047 (4)	0.029 (3)	0.026 (3)	0.001 (3)	0.003 (2)	0.004 (2)
C7	0.019 (2)	0.029 (3)	0.019 (2)	0.004 (2)	-0.002 (2)	0.0020 (18)
C8	0.039 (3)	0.030 (3)	0.029 (3)	0.002 (2)	0.008 (2)	0.001 (2)
С9	0.031 (3)	0.049 (4)	0.037 (3)	-0.002 (3)	0.015 (3)	-0.008 (3)
C10	0.027 (3)	0.055 (4)	0.034 (3)	-0.005 (3)	0.006 (3)	0.010 (3)
C11	0.042 (4)	0.041 (4)	0.042 (4)	0.005 (3)	0.005 (3)	0.014 (3)
C12	0.039 (3)	0.033 (3)	0.042 (3)	0.003 (3)	0.010 (3)	0.001 (2)
N1	0.024 (2)	0.035 (3)	0.030 (2)	0.005 (2)	-0.006 (2)	-0.006 (2)
N2	0.024 (2)	0.027 (2)	0.026 (2)	0.0013 (19)	0.0013 (18)	-0.0009 (18)
01	0.030 (2)	0.041 (2)	0.0191 (17)	0.0012 (19)	-0.0054 (16)	-0.0017 (15)
O2	0.054 (3)	0.027 (2)	0.033 (2)	-0.0097 (19)	0.0062 (19)	0.0076 (17)
O3W	0.034 (2)	0.030 (2)	0.040 (2)	-0.0001 (18)	0.0043 (19)	0.0009 (18)
O4W	0.026 (2)	0.039 (2)	0.033 (2)	-0.0042 (16)	0.0051 (15)	-0.0017 (18)
O5	0.032 (2)	0.033 (2)	0.0204 (17)	-0.0013 (19)	-0.0038 (17)	0.0014 (15)
O6	0.050 (2)	0.0195 (18)	0.030 (2)	-0.0041 (19)	0.003 (2)	0.0057 (15)
O7W	0.037 (2)	0.026 (2)	0.039 (2)	0.0002 (19)	0.0000 (19)	0.0008 (17)
Na1	0.0320 (11)	0.0309 (11)	0.0276 (11)	-0.0076 (10)	-0.0022 (10)	0.0050 (9)
Na2	0.0282 (11)	0.0319 (12)	0.0355 (12)	-0.0040 (9)	-0.0018 (10)	0.0061 (10)
S1	0.0246 (6)	0.0272 (6)	0.0193 (6)	-0.0005 (6)	0.0002 (6)	0.0011 (5)
S2	0.0237 (6)	0.0235 (6)	0.0195 (6)	-0.0003 (6)	0.0000 (6)	0.0011 (5)
Cl1	0.0539 (11)	0.135 (2)	0.0328 (9)	-0.0077 (13)	0.0146 (9)	-0.0199 (11)
C12	0.0530 (10)	0.0954 (15)	0.0317 (8)	0.0015 (11)	0.0123 (8)	0.0159 (9)
Br1	0.0294 (3)	0.0519 (4)	0.0323 (3)	-0.0022 (3)	-0.0069 (3)	0.0015 (3)
Br2	0.0297 (3)	0.0512 (4)	0.0385 (3)	-0.0043 (3)	-0.0080 (3)	0.0075 (3)

Geometric parameters (A,)	Geometric	parameters	(Å.	°)
----------------------------	-----------	------------	-----	----

C1—C6	1.389 (8)	O2—S1	1.446 (4)
C1—C2	1.392 (8)	O2—Na1	2.311 (4)
C1—S1	1.764 (5)	O3W—Na1 ⁱⁱ	2.433 (5)
C2—C3	1.387 (9)	O3W—Na1	2.458 (5)
С2—Н2	0.9300	O3W—H31	0.82 (5)
C3—C4	1.384 (10)	O3W—H32	0.82 (5)
С3—Н3	0.9300	O4W—Na2 ⁱⁱ	2.448 (5)
C4—C5	1.373 (10)	O4W—Na1	2.502 (5)
C4—Cl1	1.733 (6)	O4W—H41	0.82 (5)
C5—C6	1.370 (8)	O4W—H42	0.82 (5)
С5—Н5	0.9300	O5—S2	1.448 (4)
С6—Н6	0.9300	O5—Na1 ^{III}	2.453 (4)
С7—С8	1.363 (7)	O5—Na2 ^{iv}	2.474 (4)
C7—C12	1.387 (7)	O6—S2	1.440 (4)
C7—S2	1.783 (5)	06—Na2	2.414 (4)
C8—C9	1.392 (8)	O7W—Na2	2.417 (5)
С8—Н8	0.9300	O7W—Na2 ^v	2.425 (5)
C9—C10	1.368 (9)	07W—H71	0.82 (5)
С9—Н9	0.9300	О/W—H/2 ::	0.82 (5)
C10—C11	1.348 (9)	Na1—O1 ⁿ	2.420 (4)
C10—Cl2	1.738 (6)	Na1—O3W ⁱ	2.433 (5)
C11—C12	1.396 (9)	Na1—O5 ^{vi}	2.453 (4)
C11—H11	0.9300	Na1—Na2 ⁱⁱ	3.321 (3)
C12—H12	0.9300	Na1—Na1 ⁱ	4.065 (3)
N1—S1	1.574 (5)	Na1—Na1 ⁱⁱ	4.065 (3)
N1—Br1	1.885 (4)	Na2—O7W ^{iv}	2.425 (5)
N2—S2	1.579 (4)	Na2—O4W ⁱ	2.448 (5)
N2—Br2	1.896 (4)	Na2—O5 ^v	2.474 (4)
O1—S1	1.450 (4)	Na2—Na1 ⁱ	3.321 (3)
O1—Na1 ⁱ	2.420 (4)	Na2—Na2 ^{iv}	4.143 (3)
O1—Na2	2.495 (4)	Na2—Na2 ^v	4.143 (3)
C6—C1—C2	120.2 (5)	O3W ⁱ —Na1—Na2 ⁱⁱ	106.53 (13)
C6—C1—S1	120.8 (4)	O5 ^{vi} —Na1—Na2 ⁱⁱ	47.90 (10)
C2-C1-S1	119.0 (4)	O3W—Na1—Na2 ⁱⁱ	115.51 (13)
C3—C2—C1	119.8 (6)	O4W—Na1—Na2 ⁱⁱ	47.19 (11)
С3—С2—Н2	120.1	O2—Na1—Na1 ⁱ	59.27 (12)
C1—C2—H2	120.1	O1 ⁱⁱ —Na1—Na1 ⁱ	110.07 (13)
C4—C3—C2	119.0 (7)	O3W ⁱ —Na1—Na1 ⁱ	33.98 (11)
С4—С3—Н3	120.5	O5 ^{vi} —Na1—Na1 ⁱ	144.99 (13)
С2—С3—Н3	120.5	O3W—Na1—Na1 ⁱ	130.49 (14)

C5—C4—C3	121.1 (6)	O4W—Na1—Na1 ⁱ	69.12 (10)
C5—C4—Cl1	120.0 (6)	Na2 ⁱⁱ —Na1—Na1 ⁱ	113.08 (8)
C3—C4—Cl1	118.9 (6)	O2—Na1—Na1 ⁱⁱ	104.32 (15)
C6—C5—C4	120.4 (6)	O1 ⁱⁱ —Na1—Na1 ⁱⁱ	75.93 (11)
С6—С5—Н5	119.8	O3W ⁱ —Na1—Na1 ⁱⁱ	88.71 (14)
С4—С5—Н5	119.8	O5 ^{vi} —Na1—Na1 ⁱⁱ	102.68 (11)
C5—C6—C1	119.5 (6)	O3W—Na1—Na1 ⁱⁱ	33.58 (10)
С5—С6—Н6	120.2	O4W—Na1—Na1 ⁱⁱ	154.36 (13)
С1—С6—Н6	120.2	Na2 ⁱⁱ —Na1—Na1 ⁱⁱ	116.84 (8)
C8—C7—C12	121.0 (5)	Na1 ⁱ —Na1—Na1 ⁱⁱ	112.28 (11)
C8—C7—S2	121.2 (4)	O6—Na2—O7W	99.72 (16)
C12—C7—S2	117.8 (4)	O6—Na2—O7W ^{iv}	88.60 (15)
C7—C8—C9	119.4 (6)	O7W—Na2—O7W ^{iv}	114.21 (13)
С7—С8—Н8	120.3	O6—Na2—O4W ⁱ	94.98 (16)
С9—С8—Н8	120.3	O7W—Na2—O4W ⁱ	158.08 (16)
С10—С9—С8	119.3 (6)	O7W ^{iv} —Na2—O4W ⁱ	82.15 (15)
С10—С9—Н9	120.4	O6—Na2—O5 ^v	170.44 (17)
С8—С9—Н9	120.4	O7W—Na2—O5 ^v	86.71 (15)
C11—C10—C9	122.0 (6)	O7W ^{iv} —Na2—O5 ^v	82.29 (15)
C11—C10—Cl2	119.5 (5)	O4W ⁱ —Na2—O5 ^v	80.98 (14)
C9—C10—Cl2	118.4 (5)	O6—Na2—O1	110.10 (15)
C10—C11—C12	119.5 (6)	O7W—Na2—O1	80.45 (15)
C10-C11-H11	120.3	O7W ^{iv} —Na2—O1	154.57 (17)
C12—C11—H11	120.3	O4W ⁱ —Na2—O1	79.27 (14)
C7—C12—C11	118.8 (6)	O5 ^v —Na2—O1	77.79 (14)
C7—C12—H12	120.6	O6—Na2—Na1 ⁱ	134.52 (13)
C11—C12—H12	120.6	O7W—Na2—Na1 ⁱ	110.29 (12)
S1—N1—Br1	111.2 (3)	O7W ^{iv} —Na2—Na1 ⁱ	108.04 (13)
S2—N2—Br2	109.6 (2)	O4W ⁱ —Na2—Na1 ⁱ	48.57 (11)
S1—O1—Na1 ⁱ	124.5 (2)	O5 ^v —Na2—Na1 ⁱ	47.35 (10)
S1—O1—Na2	145.9 (2)	O1—Na2—Na1 ⁱ	46.54 (10)
Na1 ⁱ —O1—Na2	84.99 (14)	O6—Na2—Na2 ^{iv}	61.57 (11)
S1—O2—Na1	145.0 (3)	O7W—Na2—Na2 ^{iv}	130.01 (14)
Na1 ⁱⁱ —O3W—Na1	112.44 (17)	O4W ⁱ —Na2—Na2 ^{iv}	71.51 (10)
Na2 ⁱⁱ —O4W—Na1	84.24 (14)	O5 ^v —Na2—Na2 ^{iv}	108.88 (13)
S2—O5—Na1 ⁱⁱⁱ	145.1 (2)	O1—Na2—Na2 ^{iv}	148.22 (12)
S2—O5—Na2 ^{iv}	128.6 (2)	Na1 ⁱ —Na2—Na2 ^{iv}	114.96 (8)
Na1 ⁱⁱⁱ —O5—Na2 ^{iv}	84.75 (14)	O6—Na2—Na2 ^v	112.02 (14)
S2—O6—Na2	126.9 (2)	O7W ^{iv} —Na2—Na2 ^v	85.34 (14)
Na2—O7W—Na2 ^v	117.67 (17)	O4W ⁱ —Na2—Na2 ^v	149.90 (14)
O2-Na1-O1 ⁱⁱ	168.85 (17)	O5 ^v —Na2—Na2 ^v	70.25 (11)

O2-Na1-O3W ⁱ	87.76 (16)	O1—Na2—Na2 ^v	102.39 (11)
O1 ⁱⁱ —Na1—O3W ⁱ	81.10 (15)	Na1 ⁱ —Na2—Na2 ^v	111.32 (8)
O2—Na1—O5 ^{vi}	110.88 (16)	Na2 ^{iv} —Na2—Na2 ^v	109.12 (11)
O1 ⁱⁱ —Na1—O5 ^{vi}	79.65 (14)	O2—S1—O1	115.1 (2)
O3W ⁱ —Na1—O5 ^{vi}	154.43 (17)	O2—S1—N1	115.6 (3)
O2—Na1—O3W	90.50 (17)	O1—S1—N1	104.1 (2)
O1 ⁱⁱ —Na1—O3W	95.20 (15)	O2—S1—C1	104.9 (2)
O3W ⁱ —Na1—O3W	119.04 (13)	O1—S1—C1	107.9 (2)
O5 ^{vi} —Na1—O3W	79.47 (15)	N1—S1—C1	109.1 (2)
O2—Na1—O4W	98.09 (16)	O6—S2—O5	115.2 (2)
O1 ⁱⁱ —Na1—O4W	79.67 (14)	O6—S2—N2	115.8 (3)
O3W ⁱ —Na1—O4W	79.78 (15)	O5—S2—N2	104.6 (2)
O5 ^{vi} —Na1—O4W	80.34 (14)	O6—S2—C7	106.2 (2)
O3W—Na1—O4W	159.76 (16)	O5—S2—C7	107.0 (2)
O2—Na1—Na2 ⁱⁱ	136.25 (15)	N2—S2—C7	107.5 (2)
O1 ⁱⁱ —Na1—Na2 ⁱⁱ	48.47 (11)		
C6—C1—C2—C3	0.9 (10)	Na2 ^v —O7W—Na2—Na1 ⁱ	-97.92 (19)
S1—C1—C2—C3	179.4 (5)	Na2 ^v —O7W—Na2—Na2 ^{iv}	56.0 (2)
C1—C2—C3—C4	-0.4 (11)	S1—O1—Na2—O6	74.8 (4)
C2—C3—C4—C5	0.0 (10)	Na1 ⁱ —O1—Na2—O6	-132.98 (15)
C2—C3—C4—Cl1	178.3 (5)	S1—O1—Na2—O7W	-22.1 (4)
C3—C4—C5—C6	-0.1 (10)	Na1 ⁱ —O1—Na2—O7W	130.08 (15)
Cl1—C4—C5—C6	-178.4 (5)	S1—O1—Na2—O7W ^{iv}	-150.0 (4)
C4—C5—C6—C1	0.6 (10)	Na1 ⁱ —O1—Na2—O7W ^{iv}	2.2 (4)
C2—C1—C6—C5	-1.0 (9)	S1—O1—Na2—O4W ⁱ	166.2 (4)
S1—C1—C6—C5	-179.5 (5)	Na1 ⁱ —O1—Na2—O4W ⁱ	-41.57 (13)
С12—С7—С8—С9	0.1 (9)	S1—O1—Na2—O5 ^v	-110.8 (4)
S2—C7—C8—C9	179.3 (5)	Na1 ⁱ —O1—Na2—O5 ^v	41.41 (14)
C7—C8—C9—C10	0.5 (9)	S1—O1—Na2—Na1 ⁱ	-152.2 (5)
C8—C9—C10—C11	-0.7 (10)	S1—O1—Na2—Na2 ^{iv}	143.0 (3)
C8—C9—C10—Cl2	177.4 (5)	Na1 ⁱ —O1—Na2—Na2 ^{iv}	-64.8 (3)
C9—C10—C11—C12	0.3 (10)	S1—O1—Na2—Na2 ^v	-44.5 (4)
Cl2—C10—C11—C12	-177.8 (5)	Na1 ⁱ —O1—Na2—Na2 ^v	107.73 (12)
C8—C7—C12—C11	-0.4 (10)	Na1—O2—S1—O1	-64.3 (6)
S2-C7-C12-C11	-179.7 (5)	Na1—O2—S1—N1	57.1 (6)
C10-C11-C12-C7	0.3 (10)	Na1—O2—S1—C1	177.3 (5)
S1—O2—Na1—O1 ⁱⁱ	41.3 (13)	Na1 ⁱ —O1—S1—O2	4.2 (4)
S1—O2—Na1—O3W ⁱ	39.5 (5)	Na2—O1—S1—O2	149.9 (4)
S1—O2—Na1—O5 ^{vi}	-158.4 (5)	Na1 ⁱ —O1—S1—N1	-123.3 (3)
S1—O2—Na1—O3W	-79.5 (5)	Na2—O1—S1—N1	22.4 (5)
S1—O2—Na1—O4W	118.9 (5)	Na1 ⁱ —O1—S1—C1	120.9 (3)
S1—O2—Na1—Na2 ⁱⁱ	151.3 (4)	Na2—O1—S1—C1	-93.4 (4)

supplementary materials

59.1 (5)	Br1—N1—S1—O2	56.7 (3)
-48.6 (5)	Br1—N1—S1—O1	-176.1 (2)
115.7 (2)	Br1—N1—S1—C1	-61.1 (3)
-54.67 (19)	C6—C1—S1—O2	-178.1 (5)
28.02 (19)	C2-C1-S1-O2	3.5 (6)
-133.1 (2)	C6—C1—S1—O1	58.8 (5)
-128.8 (4)	C2-C1-S1-O1	-119.7 (5)
-100.70 (17)	C6—C1—S1—N1	-53.7 (5)
67.4 (2)	C2-C1-S1-N1	127.8 (5)
149.64 (15)	Na2—O6—S2—O5	-74.1 (4)
-41.42 (13)	Na2—O6—S2—N2	48.4 (4)
-124.13 (15)	Na2—O6—S2—C7	167.6 (3)
39.70 (13)	Na1 ⁱⁱⁱ —O5—S2—O6	170.2 (4)
35.4 (5)	Na2 ^{iv} —O5—S2—O6	10.4 (4)
-157.71 (13)	Na1 ⁱⁱⁱ —O5—S2—N2	41.9 (5)
-59.5 (3)	Na2 ^{iv} —O5—S2—N2	-117.9 (3)
-66.0 (3)	Na1 ⁱⁱⁱ —O5—S2—C7	-72.0 (4)
48.3 (3)	Na2 ^{iv} —O5—S2—C7	128.2 (3)
130.3 (3)	Br2—N2—S2—O6	55.0 (3)
-149.4 (3)	Br2—N2—S2—O5	-177.0 (2)
162.5 (2)	Br2—N2—S2—C7	-63.5 (3)
64.4 (3)	C8—C7—S2—O6	13.9 (6)
-36.1 (3)	C12—C7—S2—O6	-166.9 (5)
116.8 (2)	C8—C7—S2—O5	-109.7 (5)
23.96 (18)	C12—C7—S2—O5	69.6 (5)
-111.8 (4)	C8—C7—S2—N2	138.4 (5)
-56.06 (19)	C12—C7—S2—N2	-42.3 (6)
	59.1 (5) -48.6 (5) 115.7 (2) -54.67 (19) 28.02 (19) -133.1 (2) -128.8 (4) -100.70 (17) 67.4 (2) 149.64 (15) -41.42 (13) -124.13 (15) 39.70 (13) 35.4 (5) -157.71 (13) -59.5 (3) -66.0 (3) 48.3 (3) 130.3 (3) -149.4 (3) 162.5 (2) 64.4 (3) -36.1 (3) 116.8 (2) 23.96 (18) -111.8 (4) -56.06 (19)	$59.1 (5)$ $Br1-N1-S1-O2$ $-48.6 (5)$ $Br1-N1-S1-O1$ $115.7 (2)$ $Br1-N1-S1-O1$ $-54.67 (19)$ $C6-C1-S1-O2$ $28.02 (19)$ $C2-C1-S1-O2$ $28.02 (19)$ $C2-C1-S1-O2$ $-133.1 (2)$ $C6-C1-S1-O1$ $-128.8 (4)$ $C2-C1-S1-O1$ $-100.70 (17)$ $C6-C1-S1-N1$ $67.4 (2)$ $C2-C1-S1-N1$ $149.64 (15)$ $Na2-O6-S2-O5$ $-41.42 (13)$ $Na2-O6-S2-O5$ $-124.13 (15)$ $Na2-O6-S2-O6$ $35.4 (5)$ $Na2^{iv}-O5-S2-O6$ $-157.71 (13)$ $Na1^{iii}-O5-S2-N2$ $-59.5 (3)$ $Na2^{iv}-O5-S2-N2$ $-66.0 (3)$ $Na1^{iii}-O5-S2-C7$ $48.3 (3)$ $Na2^{iv}-O5-S2-C7$ $130.3 (3)$ $Br2-N2-S2-O6$ $-149.4 (3)$ $Br2-N2-S2-O5$ $162.5 (2)$ $Br2-N2-S2-O6$ $-36.1 (3)$ $C12-C7-S2-O5$ $23.96 (18)$ $C12-C7-S2-N2$ $-56.06 (19)$ $C12-C7-S2-N2$

Symmetry codes: (i) *x*-1/2, -*y*+1/2, -*z*; (ii) *x*+1/2, -*y*+1/2, -*z*; (iii) *x*-1, *y*-1, *z*; (iv) *x*-1/2, -*y*-1/2, -*z*; (v) *x*+1/2, -*y*-1/2, -*z*; (vi) *x*+1, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3W—H31···Br1	0.82 (4)	2.81 (5)	3.610 (4)	167 (6)
O3W—H32···N2 ^{vi}	0.82 (5)	2.08 (4)	2.875 (6)	166 (5)
O4W—H41…N2 ^{vii}	0.82 (4)	2.14 (5)	2.911 (6)	158 (4)
O4W—H42···O7W ^{vii}	0.82 (4)	2.46 (4)	3.202 (6)	152 (5)
O7W—H71···Br2	0.82 (4)	2.62 (5)	3.392 (4)	157 (6)
O7W—H72…N1	0.82 (4)	2.02 (4)	2.840 (6)	174 (5)
C2—H2···Br2 ^{vii}	0.93	2.85	3.657 (6)	146

Symmetry codes: (vi) *x*+1, *y*+1, *z*; (vii) *x*, *y*+1, *z*.

